ADVANCED LANE DIVIDER WITH BOLLARD PROTECTION (OPTIONAL)

DISPENSER CURB ISLAND WITH BOLLARD PROTECTION

DISPENSER (TYP)
3.75MVA
12.47KV-480V TRANSFORMER (TYP)

PAD MOUNTED EQUIPMENT (PME-12)
12.47KV FUSIBLE DISTRIBUTION BAY

2,500A 480V 65KAIC SWBD (TYP)

MCS SUPPLY EQUIPMENT

NOT TO BE USED FOR CONSTRUCTION
3.75MVA
12.47KV-480V
TRANSFORMER (TYP)

PAD MOUNTED
EQUIPMENT (PME-12)
12.47KV FUSIBLE
DISTRIBUTION BAY

2,500A 480V
65KAIC
SWBD (TYP)

(6) 4" CONDUTS
EACH WITH 600 MCM
CU CONDUCTORS @ 75°
EQUIPMENT TERMINATIONS

(7) 4" CONDUTS
EACH WITH 500 MCM
CU CONDUCTORS @ 90°
EQUIPMENT TERMINATIONS

(8) 4" CONDUTS
EACH WITH 500 MCM
CU CONDUCTORS @ 75°
TERMINATIONS

ADVANCED LANE DIVIDER
WITH BOLLARD PROTECTION
(OPATIONAL)

DISPENSER CURB ISLAND
WITH BOLLARD PROTECTION

DISPENSER (TYP)

MCS SUPPLY EQUIPMENT

MCS SUPPLY EQUIPMENT

MCS SUPPLY EQUIPMENT

BLACK & VEATCH CORPORATION • 11401 Lamar Avenue • Overland Park, KS 66211 • 913-458-2000 • Fax 913-458-2934

NOTE TO BE Used FOR CONSTRUCTION
TURNING RADIUS FOR LARGEST POSSIBLE VEHICLE SHOULD BE CONSIDERED FOR EACH SPACE

METER/PME/TRANSFORMER

SWITCHBOARD

SPACE AVAILABLE FOR MCS EQUIPMENT AS NEEDED

FOOTNOTE: FOLLOW, RUSSELL E. BLACK & VEATCH LAYOUTS FOR AES WORKING GROUP, MAY 5, 2022. CHARGING INTERFACE INITIATIVE (CHARG-EV) MEGAWATT CHARGING SYSTEM (AES FORCES. PDF DRAWING: 8.5 IN X 11 IN. THESE FIGURES ARE SUBJECT TO COPYRIGHT BY BLACK & VEATCH AND WERE USED WITH EXPRESSED PERMISSION. FOR APPROPRIATE USE, PLEASE CONTACT: RUSSELL FOLLOM (FOLLOWME@BV.COM) OR PAUL SITTH (PSITTH@BV.COM)
Figure 1 above illustrates a hypothetical layout of fueling lanes installed with the Megawatt Charging System (MCS), a specification in development by the Charging Interface Initiative (Chari) for commercial electric vehicles. Note: MCS specification requires that the charging connector be placed on the left side of the vehicle so that the connector can be inserted into an inlet located behind the driver’s door, placed at approximately at hip height. The placement of the conduits and electrical supply equipment, and truck entries for entry and exit from the lane will vary across different types and sizes of charging stations, with an illustrative case in Appendix 6.

Footnote: Pollon, Russell & Black & Veatch. Layouts for ACE Working Group. May 9, 2003. Charging Interface Initiative (Chari) Megawatt Charging System Task Force. PDF drawing, 8.5 in x 11 in. These figures are subject to copyright by Black & Veatch and were used with expressed permission. For appropriate use, please contact: Russell Pollon (pollonr@bv.com) or Paul Sath (sathp@bv.com).